Note

Synthesis of 3-amino-3-deoxy-5-thio-D-allose and 3-amino-3-deoxy-1,2-O:5,6-S,O-di-isopropylidene-5-thio- α -D-glucofuranose

Najim A.L. Al-Masoudi and Natiq J. Tooma Chemistry Department, College of Science, University of Basrah Basrah, (Iraq) (Received April 16th, 1992; accepted June 19th, 1992)

The syntheses have been described of the 2-acetamido-2-deoxy derivatives of 5-thio-D-glucose¹⁻³, 5-thio-D-mannose⁴, 5-thio-D-allose⁵, 3-acetamido-3-deoxy-5-thio-D-xylose⁶, and 4-acetamido-4-deoxy-5-thio-L-lyxose⁶. We now report the syntheses of 3-amino-3-deoxy-5-thio-D-allose hydrochloride and a derivative of the *gluco* analogue.

Treatment of the syrupy ketone⁷ 1 with hydroxylamine in pyridine-ethanol gave two products which were separated by chromatography. The first was identified tentatively as the oxime 2, the structure of which was based on the ¹H NMR data (Table I). Reduction of 2 with lithium aluminium hydride in dry ether gave a single product identified as 3-amino-3-deoxy-1,2-O:5,6-S,O-di-isopropylidene-5-thio- α -D-allofuranose (3). The ¹H NMR spectrum of 3 (Table I) showed some resemblance to that of the *allo* alcohol⁷ 4.

Treatment of 3 with toluene-p-sulphonyl chloride in dry pyridine gave the crystalline N-tosylate 5 (58%). The corresponding acetamido (7) and benzamido (8) derivatives were obtained as syrups.

Hydrolysis of 3 in hot aqueous hydrochloric acid gave crystalline 3-amino-3-de-oxy-5-thio-p-allose hydrochloride (9), the mutarotation of which $[-12^{\circ} \rightarrow +65^{\circ}$ (H₂O)] indicated the β -pyranose form, and this was confirmed by the conversion into the penta-acetate 10. The ¹H NMR spectrum of 10 (Table I) demonstrated the ⁴C₁ conformation ($J_{1,2}$ 9.0, $J_{4,5}$ 10.0 Hz).

Treatment of the 3-mesylate 6 with lithium azide in dry N, N-dimethylfor-

Correspondence to: Professor N.A.L. Al-Masoudi, Chemistry Department, College of Science, University of Basrah, Basrah, Iraq.

TABLE I

1H NMR data 4

Com-	Chemi	cal shifts	Other signals					
pound	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	
2	6.12	5.53		4.97	3.88	4.50	4.41	8.44 (OH), 1.82,
								1.82, 1.71,
								1.60 (2 CMe ₂)
3	5.70	4.54	4.	24	3.06	3.65	3.73	6.42 (NH), 1.63,
								1.59, 1.50,
								$1.30 (2 \text{ CMe}_2)$
4 ⁷	5.61	4.46		4	.2-3.6			2.34 (OH), 1.62,
								1.58, 1.52,
								$1.31 (2 \text{ CMe}_2)$
5	5.79	4.61	5.10	4.30	3.48	3.85	3.76	5.11 (NH), 2.39
								(ArMe), 1.56,
								1.45, 1.25,
								$1.17 (2 \text{ CMe}_2)$
6 ⁷	5.12	4.14	4.49	4.08	3.49	3.81	3.65	$2.39 (SO_2 Me),$
								1.53, 1.37 (2),
								1.00 (2 CMe ₂)
7	5.75	4.30	4.58	4.26	3.67	4.10	3.83	5.82 (NH), 2.01
								(COMe), 1.62,
								1.60, 1.55
								(2 CMe ₂)
8	5.69	4.33	4.62	4.27	3.57	4.08	3.77	5.82 (NH), 7.71-
								7.23 (H-Ar),
								1.59, 1.53,
								1.30, 1.22
								(2 CMe ₂)
10	6.13	5.61	5.10	5.40	3.67	4.35	4.17	5.95 (NH), 2.18,
								2.12 (2), 2.08,
								2.04 (NHAc, OAc)
11	5.81	4.58	3.85	4.31	3.62	3.81	3.72	1.64, 1.58,
								1.47, 1.24
								(2 CMe ₂)
12	5.81	4.36	4.28-	-4.16	3.57	4.0	00	5.74 (NH), 1.63,
								1.59, 1.45,
								1.25 (2 CMe ₂)
3 ⁷	5.83	4.42		4	.4-3.5			2.69 (OH), 1.66,
								1.60 (2), 1.47
								(2 CMe_2)
14	5.91	4.69	5.32	4.38	3.56	3.86	3.76	5.72 (NH), 2.31
								ArMe), 1.68,
								1.61, 1.58,
								1.45, 1.36
								(2 CMe ₂)

^a For solutions in CDCl₃, except 5 and 13 (CCl₄), and 6 (C₆D₆).

mamide gave a single compound which was identified as the expected 3-azido-3-deoxy-1,2-O:5,6-S,O-di-isopropylidene-5-thio- α -D-glucofuranose (11), the structure of which was indicated by the ¹H NMR spectrum (Table I).

Coupling constants (J in Hz)										
$\overline{J_{1,2}}$	J _{2,3}	$J_{3,4}$	$J_{4,5}$	J _{5,6a}	$J_{5,6\mathrm{b}}$	$J_{6a,6b}$				
4.0			7.0	5.0	10.0	12.0				
4.4	4.0			4.8	7.2	12.0				
4.0	4.5									
4.0	4.5	4.1	8.8	3.8	4.8	9.5				
4.0	5.0	9.0	6.0	4.0	6.5	10.5				
4.1	4.4	5.7	8.0	3.5	5.6	10.0				
6.0	7.2	9.0	7.0	3.5	5.8	10.0				
9.0	3.0	2.6	10.0	5.5	5.0	12.0				
3.5	0	3.0	9.5	3.0	4.5	11.0				
4.5	0		10.0	3.0	5.0	12.0				
3.5	0									
4.0	0	3.5	10.5	2.5	4.5	11.5				

Reduction of 11 with lithium aluminium hydride in dry ether afforded the syrupy amine 12. The $J_{2,3}$ value in the ¹H NMR spectrum of 12 (Table I) had a value similar to that (0 Hz) of the gluco alcohol⁷ 13. The amine 12 was characterised as the crystalline N-tosylate 14, the ¹H-NMR spectrum (Table I) of which confirmed the gluco configuration.

EXPERIMENTAL

Melting points were measured with a Gallenkamp apparatus and are uncorrected. The ¹H NMR spectra (internal Me₄Si) were recorded with Perkin-Elmer R32 (90 MHz) and Varian EM-390 (80 MHz) spectrometers. The ¹H NMR data are reported in Table I. Optical rotations were determined with a Perkin-Elmer 141 polarimeter. The purity of products was monitored by TLC on Kieselgel 60 (Merck). Column chromatography was performed on silica gel (Merck, 70-230 mesh). Amino sugars were detected with ninhydrin.

1,2-O: 5,6-S,O-Di-isopropylidene-5-thio- α -D-ribo-hexofuranos-3-ulose oxime (2). —The ketone⁷ I (7.0 g, 23.94 mmol) was heated under reflux in 1:1 EtOH-pyridine (70 mL) containing hydroxylamine (3.6 g, 109.9 mmol) for 3 h. The mixture was then concentrated under vacuum and the residue was partitioned between CHCl₃ and water. The organic layer was dried (MgSO₄), then filtered, and the solvent was evaporated. Column chromatography (4:1 benzene-ether) of the residue (6.0 g) gave, first, 2 (2.4 g, 33%), mp 102-103°C (from di-isopropyl ether), $[\alpha]_D + 10^\circ$ (c 0.6, CHCl₃) (Found: C, 49.75; H, 6.71; N, 4.92. C₁₂H₁₉NO₅S calcd: C, 49.81; H, 6.62; N, 4.84%).

Further elution with 2:1 benzene-ether afforded an unidentified syrupy product (0.5 g).

3-Amino-3-deoxy-1,2-O: 5,6-S,O-di-isopropylidene-5-thio- α -D-allofuranose (3).— A solution of 2 (1.0 g, 3.45 mmol) in dry ether (50 mL) was heated under reflux with LiAlH₄ (0.8 g, 21.4 mmol) for 2 h. TLC (4:1 benzene-MeOH) then revealed a single product (R_f 0.65). Ethyl acetate was added followed by water to destory the excess of LiAlH₄, and the organic phase was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 benzene-MeOH) of the residue afforded crystalline 3 (0.51 g, 53%). Recrystallisation from cyclohexane gave 3; mp 96-97°C; $[\alpha]_D - 20^\circ$ (c 1.1, CHCl₃) (Found: C, 51.64; H, 8.01; N, 4.90. C₁₂H₂₁NO₄S calcd: C, 52.34; H, 7.69; N, 5.09%).

3-Deoxy-1,2-O: 5,6-S,O-di-isopropylidene-3-O-toluene-p-sulphonamido-5-thio- α -D-allofuranose (5).—A solution of 3 (50 mg, 0.18 mmol) in dry pyridine (5 mL) was treated with toluene-p-sulphonyl chloride (75 mg, 0.39 mmol) at room temperature overnight. A few drops of water were added and, after 15 min, the mixture was partitioned between water and CHCl₃. The organic extract was washed successively with dil H₂SO₄ and dil aq NaHCO₃, dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 benzene-MeOH) of the residue and recrystallisation from di-isopropyl ether gave 5 (45 mg, 58%); mp 155–157°C; $[\alpha]_D$ – 14° (c 0.5, CHCl₃) (Found: C, 52.69; H, 6.16; N, 2.96. C₁₉H₂₉NO₆S₂ calcd: C, 53.12; H, 6.34; N, 3.26%).

3-Acetamido-3-deoxy-1,2-O: 5,6-S,O-di-isopropylidene-5-thio- α -D-allofuranose (7).—To a solution of 3 (130 mg, 0.47 mmol) in dry pyridine (5 mL) was added acetic anhydride (3 mL). The solution was heated at 70°C for 30 min, then worked-up as above. Column chromatography (9:1 benzene–MeOH) of the product yielded syrupy 7 (61 mg, 70%); $[\alpha]_D$ – 7° (c 1.2, CHCl₃). Mass spectrum: m/z 317.4042 (M⁺) (C₁₄H₂₃NO₅S calcd 317.4029).

3-Benzamido-3-deoxy-1,2-O: 5,6-S,O-di-isopropylidene-5-thio- α -D-allofuranose (8).—To a solution of 3 (63 mg, 0.23 mmol) in dry pyridine (5 mL) was added benzoyl chloride (0.03 mL). The solution was heated at 70°C for 30 min, then worked-up as above. Column chromatography (9:1 benzene-MeOH) of the product yielded syrupy 8 (61 mg, 70%); $[\alpha]_D$ -13° (c 0.56, CHCl₃). Mass spectrum: m/z 379.4710 (M⁺) (C₁₉H₂₅NO₅S calcd 379.4753).

3-Amino-3-deoxy-5-thio-D-allose hydrochloride (9).—A solution of 3 (236 mg, 0.92 mmol) in 2 M HCl (12 mL) was kept at 100°C for 1 h. TLC (3:2 benzene–MeOH) then revealed a component with R_f 0.28. The mixture was neutralised with Dowex 1-X8-100 (HO⁻) resin, filtered, and concentrated. The residue was recrystallised from EtOH to give 9 (172 mg, 80%); mp 236–241°C; $[\alpha]_D$ – 12 \rightarrow +65° (equil.; c 0.78, H₂O) (Found: C, 30.64; H, 5.59; N, 5.85. $C_6H_{14}NO_4SCl$ calcd: C, 31.09; H, 6.09; N, 6.04%).

3-Acetamido-1,2,4,6-tetra-O-acetyl-3-deoxy-5-thio-β-D-allopyranose (10).—A solution of 9 (110 mg, 0.47 mmol) in water (15 mL) was passed through a column of Amberlite IRA-400 (HO⁻) resin, then concentrated, and the residue was treated for 2 days at room temperature with pyridine (4 mL) and acetic anhydride (2 mL). The solvents were removed and the residue was crystallised from EtOH-di-isopro-

pyl ether to yield **10** (187 mg, 82%); mp 84–88°C; $[\alpha]_D$ –13° (c 0.95, CHCl₃) (Found: C, 47.58; H, 5.70; N, 3.24. $C_{16}H_{23}NO_9S$ calcd: C, 47.39; H, 5.72; N, 3.45%).

3-Azido-3-deoxy-1,2-O: 5,6-S,O-di-isopropylidene-5-thio- α -D-glucofuranose (11). —To a solution of the 3-mesylate⁷ **6** (1.1 g, 3.41 mmol) in dry N,N-dimethylformamide (28 mL) were added sodium azide (3.7 g, 56.92 mmol) and ammonium chloride (2.0 g, 37.38 mmol). The mixture was heated under reflux for 3 h, then partitioned between CHCl₃ and water, and the organic phase was dried (MgSO₄), filtered, and concentrated. Column chromatography (2:1 benzene-ether) of the residue gave syrupy 11 (0.62 g, 66%); $[\alpha]_D$ – 45° (c 0.97, CHCl₃). Mass spectrum: m/z 259.3395 (M⁺ – N₃) (C₁₂H₁₉N₃O₄S calcd 259.3442).

3-Amino-3-deoxy-1,2-O: 5,6-S,O-di-isopropylidene-5-thio- α -D-glucofuranose (12). —A solution of 11 (200 mg, 0.65 mmol) in dry ether (15 mL) containing LiAlH₄ (50 mg) was heated under reflux for 5 h, then cooled. Ethyl acetate (2 mL) was added, followed by ether (15 mL) and a few drops of water. The mixture was boiled for 10 min, filtered (Hyflo), dried (MgSO₄), filtered, and concentrated to give the amine 13 (117 mg, 64%) as a syrup; $[\alpha]_D$ -37° (c 0.62, CHCl₃). Mass spectrum: m/z 275.3589 (M⁺) (C₁₂H₂₁NO₄S calcd: 275.3671).

3-Deoxy-1,2-O: 5,6-S,O-di-isopropylidene-3-toluene-p-sulphonamido-5-thio- α -D-glucofuranose (14).—Compound 12 (70 mg, 0.25 mmol) was treated with toluene-p-sulphonyl chloride (96 mg, 0.50 mmol) in pyridine (7 mL) overnight at room temperature and the mixture was worked-up in the usual way. Column chromatography (9:1 benzene-MeOH) of the product and crystallisation from di-isopropyl ether gave 15 (65 mg, 67%); mp 142–144°C; $[\alpha]_D$ –88° (c 0.6, CHCl₃) (Found: C, 53.07; H, 6.31; N, 3.41. $C_{19}H_{27}NO_6S_2$ calcd: C, 53.14; H, 6.34; N, 3.26%).

ACKNOWLEDGMENTS

We thank Dr. N.A. Hughes (University of Newcastle upon Tyne) for helpful discussion, Dr. M.N.S. Hill and Mr. I. Mckeag for the ¹H NMR spectra, and Messrs. P. Kelly and S. Addison for measurement of the mass spectra.

REFERENCES

- A. Hasegawa, Y. Kawai, H. Kasugai, and M. Kiso, Carbohydr. Res., 63 (1978) 131-137; E. Tanahashi,
 M. Kiso, and A. Hasegawa, ibid., 117 (1983) 304-308.
- 2 R. Bognar, P. Herczegh, R.L. Whistler, and E.B. Madumelu, Carbohydr. Res., 90 (1981) 138-143.
- 3 R.D. Gutherie and K. O'Shea, Aust. J. Chem., 34 (1981) 2225-2230.
- 4 R. Csuk and B.I. Glanzer, J. Chem. Soc., Chem. Commun., (1986) 343-344.
- 5 A. Hasegawa, E. Tanahashi, H. Nishiguchi, and M. Kiso, Gifu Diagaku Nogakubu Kenkyu Hokoku, 45 (1981) 145149; Chem. Abstr., 96 (1982) 218115h.
- 6 N.A.L. Al-Masoudi, Carbohydr. Res., 228 (1992) 339-346.
- 7 N.A. Al-Masoudi and N.A. Hughes, Carbohydr. Res., 148 (1986) 25-37.